Lockheed Martin adds lander to Mars Base Camp concept

ADELAIDE, Australia — Lockheed Martin released an update to its Mars mission architecture Sept. 29, adding a reusable lander capable of making multiple trips between Mars orbit and the surface.

The company presented an updated version of the Mars Base Camp concept during a talk at the 68th International Astronautical Congress here, arguing that the proposal fit into growing interest in operations in cislunar space as well, including landings on the surface of the moon.

The original architecture, which the company unveiled last year, called for the development of a modular spacecraft that could carry six people into Mars orbit and back. Lockheed believed that the system, which made use of the Orion spacecraft and other elements, could be ready to send people to Mars as soon as 2028.

The company has now added to the system a lander, launched separately from the base camp spacecraft, that could transport crews from the Mars Base Camp spacecraft in orbit to the Martian surface.

The single-stage lander uses aerodynamics to reduce most of its velocity while descending to the surface. That can be done, the company said, using materials similar to that used on the high-speed SR-71 jet that are not ablative and do not require to be replaced after each mission.

Liquid oxygen/liquid hydrogen engines handle the rest of the landing as well as takeoff back to Martian orbit. The vehicle weighs 30 metric tons dry and can carry 80 metric tons of propellant, with a total delta-v, or change in velocity, of 6 kilometers per second from its engines.

“You can fuel up in orbit and have enough for a two- or three-week stay on the surface with up to four crew,” said Rob Chambers, one of the Mars Base Camp designers, in an interview at the conference prior to the presentation. The lander could be then refueled and flown again, he said, with up to three trips to the surface per mission to Mars. He said the lander is intended to support at least six sorties to the Martian surface…

Read the full article at the Original Source..

Back to Top